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Abstract. The coupling of cutoff modes in nonlinear lattices is considered. It is shown that a
novel class of lattice solitons is possible in the form of a coupled soliton–soliton or a coupled
kink–soliton pair through a cross-phase modulation. Exact soliton solutions of coupled nonlinear
amplitude equations for describing such a type of interacting nonlinear localized mode in lattices
are presented and a macro-lattice experiment for their observation is suggested. Analytical results
based on a quasi-discreteness approach are checked by numerical simulations.

1. Introduction

The linear elementary excitations in atomic lattices out of ground states, i.e. linear lattice
waves or phonons, have been well understood [1]. Due to discreteness the phonon spectrum of
a homogeneous linear lattice consists of one band (for monatomic lattices) or several bands (for
multi-atomic lattices). Each band is bounded by two cutoff frequencies, which are actually the
edges of the band. There is a frequency gap (forbidden band) between two adjacent phonon
bands. We call the modes which are related to the cutoff frequencies the cutoff modes of
the system. In linear theory, no interaction occurs between phonons and the phonons cannot
propagate in forbidden bands.

The study of nonlinear lattice dynamics and related soliton excitations has been greatly
influenced by the pioneering works of Fermiet al [2] and of Zabusky and Kruskal [3]. Most
of the work in this area involved a continuum approximation, which is only valid for a long
wavelength, lower cutoff phonon mode. In recent years, the interest in localized excitations in
nonlinear lattices has been largely stimulated by the work of Sievers and Takeno [4]. A new type
of anharmonic vibrating mode, called the intrinsic localized modes (ILMs) [4, 5] or the discrete
breathers [6] has been identified. The ILM is the discrete analogy of an envelope (or breather)
soliton with its spatial extension being only a few lattice spacings and the vibrating frequency
lying above the phonon band. Its formation is due to the instability of self-phase modulation
(SPM) of the corresponding high frequency upper cutoff phonon mode. For diatomic lattices
it is shown that an intrinsic gap mode (IGM) may occur [7] and related existence criterion has
also been given recently [8, 10]. Experimentally, the ILMs and the IGMs have been observed
in coupled pendulum lattices and in electric lattices [11–13].
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Up to now the nonlinear localized excitations related to the lower and upper phonon modes
have been considered separately [4–13]. In this paper we show that in nonlinear lattices there
exists a strong interaction between different cutoff modes through a cross-phase modulation
(CPM). A novel class of nonlinear localized structures in lattices is found to be possible in the
form of coupled soliton–soliton or kink–soliton pairs.

The paper is organized as follows. In the next section, the model is introduced and
an asymptotic expansion is made for the lattice equation of motion. The nonlinearly coupled
amplitude equations for the cutoff modes of the lattice are derived based on a quasi-discreteness
approach (QDA). In section 3 we consider coupled kink–soliton and soliton–soliton solutions of
the nonlinear amplitude equations. A linear instability analysis for two cutoff-mode excitations
of the lattice is discussed in section 4. In section 5 a numerical simulation is used to check the
coupled soliton solutions and the stability analysis given in sections 3 and 4. In section 6 we
make a suggestion for observing the coupled soliton excitations in a pendulum lattice. Finally,
section 7 contains a summary of our results.

2. Asymptotic expansion

The physical idea of the coupling of cutoff modes obtained does not depend drastically on
the type of nonlinear lattice, but, for definiteness and for the sake of simplicity we consider a
one-dimensional (1D) monatomic lattice with nearest-neighbour interactions and a nonlinear
on-site potential. The equation of motion for the displacementun of thenth particle with mass
m from its equilibrium position is given by

mün = k2(un+1 + un−1− 2un) + k4[(un+1− un)3 + (un−1− un)3] −mω2
1 sinun (1)

wherek2 andk4 are respectively the harmonic and quartic force constants andω2
1 is a parameter

characteristic of the strength of the on-site potential.
The linear dispersion relation (phonon spectrum) of the system is given byω(q) = [ω2

1
+2(k2/m)(1− cos(qa))]1/2, whereq is wavenumber andω is frequency. There is a lower
cutoff frequencyω = ω1 at wavenumberq = 0 and a upper cutoff frequencyω = ω2 = [ω2

1
+4k2/m]1/2 at q = π/a due to the discreteness of the system, wherea is the lattice spacing
(see figure 1). We call the modeq = 0 with the frequencyω1 the lower cutoff mode and the

Figure 1. The linear dispersion relation of a one-dimensional monatomic lattice with intersite
interaction and nonlinear on-site potential. There is a lower cutoff modeq = 0 with the frequency
ω = ω1 and an upper cutoff modeq = π/a with the frequencyω = ω2 = [ω2

1 + 4k2/m]1/2.
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modeq = π/a with the frequencyω2 the upper cutoff mode. A lot of work has been done
on the nonlinear localized excitations related to these two cutoff modes [4–6] but no attention
has been paid to their interaction. In fact the interaction exists and may be very strong. The
reason for this can be stated as follows: because, for wavepackets with their wavenumbers
of carrier waves centred aroundq = 0 orπ/a, they have almost equal (i.e. vanishing) group
velocities. Thus if two such wavepackets are excited, they will overlap for a very long time if
they initially overlapped. Thus a strong interaction between these two wavepackets occurs due
to the nonlinearity of the system. The outcome is a formation of coupled nonlinear localized
structures through the CPM (see below).

To illustrate the above idea we apply the QDA [9, 10] to solve the nonlinear lattice
equation of motion (1). We assumeun(t) = εu(1)n,n + ε2u(2)n,n + ε3u(3)n,n . . . with u(j)n,n = u(j)
(ξn, τ ;φ1,n(t), φ2,n(t)), whereε is a small ordering parameter denoting the amplitude of the
excitation andξn = ε(na − λt) andτ = ε2t are two multiple-scale (slow) variables.λ is a
parameter to be determined by a solvability condition. The ‘fast’ variables,φl,n(t)(l = 1, 2),
represent respectively the phases of two carrier waves. The introduction of the multiple-
scale variables means the derivative expansion d/ dt = ∂/∂t − ελ∂/∂ξn + ε2∂/∂τ . Using
these notations the problem of solving equation (1) is converted into a hierarchy of linear but
inhomogeneous equations foru(j)n,n(j = 1, 2, 3, . . .).

The lowest order solution with the form of two wavepackets isu(1)n,n = A1

(ξn, τ )exp[iφ1,n(t)] + A2(ξn, τ )exp[iφ2,n(t)] + CC, whereφl,n(t) = qlna − ω(ql)t (l = 1, 2)
andω(q) is the linear phonon spectrum given above.CC represents corresponding complex
conjugate.A1 andA2 are two amplitude (or envelope) functions undetermined as yet. To
specify two cutoff modes of the system we setq1 = 0 andq2 = π/a. Thus we have

u(1)n,n = A1(ξn, τ )exp(−iω1t) +A2(ξn, τ )(−1)n exp(−iω2t) + CC (2)

where the first (second) term on the right-hand side corresponds to the lower (upper) cutoff
mode. In the next order, a solvability condition requiresλ = 0 thusξn = εna. In fact
λ = dω/ dq = [k2a/(mω)] sin(qa), which vanished for the cutoff modes.

When solvingu(3)n,n by two solvability conditions we obtain the coupled nonlinear
Schr̈odinger (NLS) equations forA1 andA2

2iω1
∂A1

∂τ
+ I2a

2∂
2A1

∂ξ2
n

+ 3β[|A1|2 + 2|A2|2]A1 = 0 (3)

2iω2
∂A2

∂τ
− I2a2∂

2A2

∂ξ2
n

+ 3β

[
2|A1|2 +

(
1− 16I4

β

)
|A2|2

]
A2 = 0 (4)

whereIj = kj/m(j = 2, 4) andβ = ω2
1/6. The different signs of the second-order spatial

derivatives result from the different dispersion (denoted byω′′(q)) of the lower and upper
cutoff modes. In fact, from the phonon spectrum obtained above, we haveω′′(0) = I2a2/ω1

andω′′(π/a) = −I2a2/ω2. Notice that the nearest-neighbour interaction (represented byI4)
makes no contribution to the SPM (denoted by|Aj |2Aj , j = 1, 2) of the lower cutoff mode.
This is because, for the lower cutoff mode, the motion of particles is always in phase. For each
mode, in addition to the SPM term there exists a CPM term denoted by|Aj |2A3−j (j = 1, 2),
which will drastically change the property of the nonlinear localized excitations in comparison
with the case of a single lower or upper cutoff mode being excited separately.

Let (v,w) = ε(A1, A2) and notice thatξn = εna and τ = ε2t ; we can rewrite the
amplitude equations (3) and (4) in the form

i
∂v

∂t
+ gv

∂2v

∂x2
+ pv(|v|2 + 2|w|2)v = 0 (5)
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i
∂w

∂t
− gw ∂

2w

∂x2
+ pw(2|v|2 + σw|w|2)w = 0 (6)

wherex = na, gv = I2a
2/(2ω1), gw = I2a

2/(2ω2), pv = ω1/4, pw = ω2
1/(4ω2) and

σw = 1 − 96k4/(mω
2
1). Obviously,gv, gw, pv andpw are positive butσw may be either

sign depending on the strength ratio between the nearest-neighbour interaction and the on-site
potential.

3. Coupled soliton solutions

The nonlinear amplitude equations obtained in the last section are different from the ones
obtained by Kivsharet al when considering the coupling between the counterpropagating
lattice waves with the same frequency [14]. In our case the dispersion terms for the lower and
the upper modes have different signs and the coefficients of the SPM terms for the two modes
are different. These features make the nonlinear coupled localized excitations with different
oscillating frequency have quite different properties, which can be seen below.

3.1. Single-mode excitations

Let us first consider single-mode solutions of equations (5) and (6). A lower cutoff mode
excitation corresponds to takingw = 0 andv 6= 0. Thus (5) and (6) are reduced to the NLS
equation forv:

i
∂v

∂t
+ gv

∂2v

∂x2
+ pv|v|2v = 0 (7)

which admits the soliton solution

v =
(

2gv
pv

)1/2

K sech(Kx − 2gvKK1t) exp{i[K1x − gv(K2
1 −K2)t ]} (8)

with K and K1 being two free parameters. In leading order approximation the lattice
displacement takes the form

un(t) = 2

(
2gv
pv

)1/2

K sech(Kna − 2gvKK1t) cos{K1na − [ω1 + gv(K
2
1 −K2)]t}. (9)

For single-mode excitations, it isimpossibleto obtain a kink for the lower cutoff mode.
The upper cutoff mode excitations correspond to settingv = 0 andw 6= 0. Hence

equations (5) and (6) are simplified to the NLS equation forw:

i
∂w

∂t
− gw ∂

2w

∂x2
+ pwσw|w|2w = 0. (10)

In this case the type of soliton solution ismass dependent. Whenm > mc,1 = 96k4/ω
2
1 (i.e.

σw > 0), we have the kink solution

w =
(

2gw
σwpw

)1/2

K tanh(Kx + 2gwKK2t) exp{i[K2x + gw(K
2
2 + 2K2)t ]} (11)

with K andK2 being two free parameters. However, ifm < mc,1 (i.e. σw < 0), the solution
changes into the soliton:

w =
(−2gw
σwpw

)1/2

K sech(Kx + 2gwKK2t) exp{i[K2x + gw(K
2
w −K2)t ]}. (12)
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The lattice configuration corresponding the solution (12) is given by

un(t) = (−1)n2

(−2gw
σwpw

)1/2

K sech(Kx + 2gwKK2t) cos{K2na − [ω2 + gw(K
2 −K2

2)t ]}.
(13)

WhenK2 is set to zero, the nonlinear localized excitation expressed in (13) is just the ILM
with the oscillating frequency above the phonon band, discussed widely in the literature [4–6].

From the results obtained above we have the conclusion that, for any particle mass, the
lower cutoff mode excitation isalwaysa soliton, but the upper cutoff excitation may be a
soliton or a kink, depending onm < mc,1 orm > mc,1. However, this picture will be changed
when the interaction of the lower and upper cutoff modes is considered.

3.2. Coupled-mode excitations

We are interested incoupled-mode excitations of the system. This requires us to solve the
coupled nonlinear amplitude equations (5) and (6) withv 6= 0 andw 6= 0. We find that
equations (5) and (6) admit the following coupled soliton solutions, dependent on the particle
massm.

(1)m > mc,2 = 32k4/ω
2
1. In this case we obtain the coupled lower cutoff kink and upper

cutoff soliton solution

v = V0 tanh(Kx − 2gvKK1t) exp[i(K1x −�1t)] (14)

w = W0 sech(Kx + 2gwKK2t) exp[i(K2x −�2t)] (15)

with

V 2
0 =

2K2

4− σw

(
σw
gv

pv
+ 2

gw

pw

)
(16)

W 2
0 =

2K2

4− σw

(
2
gv

pv
+
gw

pw

)
(17)

�1 = gv(2K2 +K2
1)− 2pvW

2
0 (18)

�2 = gw(K2 −K2
2)− 2pwV

2
0 (19)

whereK2 = −(gv/gw)K1 andK,K1 are two free parameters.
Different for the single-mode excitation discussed in the last subsection, here the lower-

cutoff mode isnota soliton but a kink! The lattice displacement for the above two-cutoff-mode
excitation takes the form

un(t) = 2V0 tanh(Kna − 2gvKK1t) cos[K1na − (ω1 +�1)t ]

+2(−1)nW0 sech(Kna + 2gwKK2t) cos[K2na − (ω2 +�2)t ]. (20)

If K1 and thusK2 are set to zero, the excitation denoted by (20) is astandingkink–soliton pair.
(2)m < mc,2 = 32k4/ω

2
1. In this case we have the coupled soliton–soliton solution

v = V0 sech(Kx − 2gvKK1t) exp[i(K1x −�1t)] (21)

w = W0 sech(Kx + 2gwKK2t) exp[i(K2x −�2t)] (22)

with

V 2
0 =

2K2

σw − 4

(
σw
gv

pv
+ 2

gw

pw

)
(23)

W 2
0 =

2K2

4− σw

(
2
gv

pv
+ 2

gw

pw

)
(24)
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�1 = gv(K2
1 −K2) (25)

�2 = gw(K2 −K2
2) (26)

whereK2 = −(gv/gw)K1 andK andK1 are still free parameters. The lattice configuration in
this case is given by

un(t) = 2V0 sech(Kna − 2gvKK1t) cos[K1na − (ω1 +�1)t ]

+2(−1)nW0 sech(Kna + 2gwKK2t) cos[K2na − (ω2 +�2)t ]. (27)

From the results obtained above we see that for the coupled-mode excitations the upper cutoff
mode is always a soliton, but the type of the lower cutoff mode may be a kink or a soliton,
controlled by the particle massm > mc,2 orm < mc,2. This is different from the case of the
single-mode excitations where the lower cutoff mode is always a soliton but the upper cutoff
mode may be a soliton or a kink, determined bym > mc,1 or m < mc,1. Note that the two
‘critical masses’mc,1 andmc,2 are different.

4. Modulational stability analysis

The formation of the coupled kink–soliton and soliton–soliton pairs given in the last section, in
particular the lower cutoff kink which isimpossiblefor the single-mode excitation, is due to the
CPM of the system. To show this one can investigate the modulational instability (MI) of the
two-cutoff-mode excitation with the formun(t) = v0 exp(−i�1t)+(−1)nw0 exp(−i�2t)+CC,
where�1 = ω1 + pv(v2

0 + 2ω2
0) and�2 = ω2 + pw(σww2

0 + 2v2
0) with v0 andw0 being

two real constants, by starting from equation (1). It is well known that the study of stability
by using nonlinear amplitude equations has been widely employed in pattern formation in
systems outside equilibrium [15, 16]. By a similar idea in the following we shall make a
simple discussion for a linear MI analysis of the two-cutoff-mode excitations by using the
nonlinear amplitude equations (5) and (6).

Consider the uniform vibrating solution of equations (5) and (6)v = v0 exp(iλ1t),
w = w0 exp(iλ2t) with λ1 = pv(v2

0 + 2w2
0) andλ2 = pw(2v2

0 + σww2
0), which corresponds to

extended lower and upper cutoff modes excited simultaneously in the system. Assume that a
perturbation is added to the solution, i.e.

v = [v0 + a1(x, t)] exp(iλ1, t) (28)

w = [w0 + a2(x, t)] exp(iλ2, t) (29)

whereaj (j = 1, 2) are small quantities. Substituting (28) and (29) into equations (5) and (6)
and keeping only the linear terms, we obtain

i
∂a1

∂t
+ gv

∂a1

∂x2
+ pv[v

2
0(a1 + a∗1) + 2v0w0(a2 + a∗2)] = 0 (30)

i
∂a2

∂t
− gw ∂a2

∂x2
+ pw[σww

2
0(a2 + a∗2) + 2v0w0(a1 + a∗1)] = 0. (31)

Since any perturbation can be decomposed into normal modes, we assume

a1 = V1 cos(Kx −�t) + iV2 sin(Kx −�t) (32)

a2 = W1 cos(Kx −�t) + iW2 sin(Kx −�t) (33)

whereK and� are respectively the wavenumber and frequency of the perturbation andVj
andWj (j = 1, 2) are small real constants. Substituting (32) and (33) into equations (30) and
(31) we obtain a set of linear equations inVj andWj . A solvability condition for solvingVj
andWj results in

(�2 + h1)(�
2 − h2) +C = 0 (34)
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where h1 = gvK
2(2pvv2

0 − gvK
2), h2 = gwK

2(2σwpww2
0 + gwK

2) and C = 16
pvpwgvgwv

2
0w

2
0K

4. From equation (34) we have

�2 = (1/2){h2 − h1± [(h2 − h1)
2 + 4(h1h2 − C)]1/2}. (35)

The stability of the uniform vibrating solution is governed by equation (35). If the frequency
� has a positive imaginary part, the perturbation will grow exponentially thus the solution is
unstable. This unstable growth of the perturbation refers to MI. The MI regime is dependent
on the parametersv0,w0 and the wavenumberK if the system parameters (i.e.gv, gw, pv, pw
andσw) are fixed. Here for simplicity we consider the case(h2 − h1)

2 + 4(h1h2 − C) > 0,
which meansK 6 K1 withK1 = [2αw2

0(σwβ
2 + γ 2− 4βγ )/(1− β2)]1/2, whereα = pv/gv,

β = gw/gv andγ = v0/w0. From (35) we see that the�− mode (corresponding to the lower
sign of equation (35)) firstly becomes unstable. The growth rate is given byσr = Im�−, i.e.

σr = 1√
2
{[(h2 − h1)

2 + 4(h1h2 − C)]1/2 − (h2 − h1)}1/2. (36)

ForK0 6 K < K1 (i.e.h1 6 h2), whereK0 = [2αw2
0(γ

2−σwβ2)/(1 +β2)]1/2, the necessary
condition for the MI to occur ish1h2 − C > 0, i.e.

K0 6 K < K+ 6 K1 (37)

where

K+ =
√
αw0{γ 2 − σw + [(γ 2 − σw)2 − 4(4− σw)γ 2]1/2}1/2. (38)

For 0 < K < K0 (i.e. h1 > h2), σr is always positive thus the uniform vibrating
solution is unstable.K = 0 andK = K+ are critical wavenumbers of the instability, i.e.
σr(K = 0) = σr(K = K+) = 0. Shown in figure 2 is the growth rateσr of the perturbation
for several values ofγ after takingw0 = 0.005. (Since the growth rate is symmetric with
σr(−K) = σr(K), only the positive-wavenumber part is shown.)

Figure 2. Growth rateσr (K) for several values ofγ after takingw0 = 0.005. Only half of
the spectrum is shown sinceσr (−K) = σr (K). The system parameters chosen in the figure are
α = pv/gv = 0.25,β = gw/gv = 0.33 andσw = −3.8.

From the discussion given above, we see that the MI involves two amplitude parameters,
v0 andw0. This is just the CPM which implies that there is a nonlinear phase change of the
lower cutoff mode induced by the upper cutoff mode, and vice versa. At a later stage of the
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stability the exponential growth of the perturbation in the unstable region will be balanced
by the nonlinearity of the system. The nonlinearly coupled localized structures given in
equations (20) and (27) are just the results of the CPM. This explains why the lower cutoff
kink given in (14) is possible for a coupled-mode but not for a single-mode excitation. The
CPM in plasma physics and in nonlinear optics has been discussed by Berkhoer and Zakharov
[17] and Agrawal [18].

5. Numerical simulations

In this section we use a molecular-dynamics simulation to test the analytical results obtained in
the last two sections. Taking the analytical soliton solutions as initial conditions, we investigate
the time evolution of the system by numerically integrating the lattice equation of motion (1),
using the fourth order Runge–Kutta method. Since there exist published numerical results for
a single lower or upper cutoff nonlinear excitation [4–6], here we present only the numerical
results of the nonlinear coupled modes given in section 3.2. We found that these nonlinearly
coupled localized modes are quite long lived. They can last for at least one hundred time units.
In general, the lifetime is longer for the excitations with smaller amplitudes.

Figure 3. The time evolution of the kink–soliton excitation corresponding to the lower and
upper cutoff modes form > mc,2 = 32k4/ω

2
1. The parameters are chosen asN = 900,

m = a = ω1 = 1.0, k2 = 2.0, k4 = 0.01,K = 0.05 andK1 = 0.

As examples, in figures 3 and 4 we have shown the time evolution of two types of coupled-
mode excitation. In our numerical simulation, we chose a chain ofN = 900 particles with
appropriate boundary conditions. In the regimem > mc,2 = 32k4/ω

2
1, the lower cutoff mode

is a kink and the upper cutoff mode is a soliton. Shown in figure 3 is the time evolution for the
coupled lower cutoff kink and upper cutoff soliton mode, taking (20) as an initial condition.
Since the lower cutoff mode is a kink, we cannot impose a periodic boundary condition.
Instead, we use an absorbing boundary condition by assuming two imaginary particles at each
end of the chain. These imaginary particles play the role of absorbing waves from the bulk
of the chain and preventing the reflection of waves from the boundaries into the bulk. We



Coupling of cutoff modes in nonlinear lattices 2767

Figure 4. The time evolution of the kink–soliton excitation corresponding to the lower and
upper cutoff modes form > mc,2 = 32k4/ω

2
1. The parameters are chosen asN = 900,

m = a = ω1 = 1.0, k2 = 2.0, k4 = 0.01,K = 0.05 andK1 = 0.

also check the results by using pseudo-periodic boundary condition but no difference has been
found. The parametersK andK1 of figure 3 are respectively taken as 0.05 and zero. From
figure 3, we see that the lattice displacement is basically the superposition of a kink and a
soliton but there is an oscillation following time. The numerical simulation shows that such
a coupled kink–soliton solution is very stable and long lived. For nonzeroK1, the coupled
kink–soliton mode has nonzero velocity. Since there exists a spatially periodic oscillation
factor in the lattice displacement, the evolution pattern of the solution in this case is a little
complex.

In the regimem < mc,2, we have a coupled soliton–soliton solution. By taking (27) as
an initial condition and using a period boundary condition, we obtain the evolution pattern of
the solution following time, which is shown in figure 4. The coupled soliton–soliton solution
is also very stable and long lived.

In order to check our analytical results from the modulational stability of extended
lower and upper cutoff modes, given in the last section, we have also numerically studied
the time evolution of the extended two-cutoff-mode excitationun(t) = v0 exp(iλ1t) + (−1)n

w0 exp(iλ2t) + CC (whereλ1 andλ2 have been given in the last section) in different parameter
regimes when a linear perturbation is added in the wayv0 → v0 + a1, w0 → w0 + a2 with
a1 = V1 cos(Kna−�t)+iV2 sin(Kna−�t)anda2 = W1 cos(Kna−�t)+iW2 sin(Kna−�t).
We also superpose a random noise on the initial velocity. Shown in figures 5(a) and (b) are the
snapshots of the energy density distribution of the system, defined by

en(t) = 1

2
m

(
du

dt

)2

+
k2

4
[(un−1− un)2 + (un+1− un)2]

+
k4

8
[(un−1− un)4 + (un+1− un)4] + mω2

1(1− cosun) (39)

at different time. The results are obtained forN = 900 with a periodic boundary condition.
The magnitude of the random noise isVn = 0.03. In figure 5(a), the wavenumber of the
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(a)

Figure 5. The modulational instability of the extended lower and upper cutoff modes. The
snapshots of the energy density distributions are determined by molecular-dynamics simulations for
the extended lower and upper cutoff modes with perturbations in the chain containing 900 particles
with a periodic boundary condition. (a) The parameterK = 0.03 is inside the unstable parameter
region; (b) the parameterK = 0.042 is outside the unstable parameter region. For both cases
γ = 12.0. We also superpose a random noise on the initial velocity and the magnitude of noise is
Vn = 0.03.

perturbationK = 0.03 is inside the unstable parameter region of the modulational instability,
i.e. 0< K < K+, while in figure 5(b)K = 0.042 is outside the unstable parameter region
K > K+, whereγ = 12.0 andK+ has been given in equation (38). The initial conditions
are chosen asV1 = V2 = 0.003,W1 = W2 = 0.001, v0 = 0.06 andw0 = 0.005. The
behaviours of the two cases are quire different. For the chain withK outside the unstable
region (figure 5(b)), the energy density remains spatially extended throughout the whole
simulation time. However, figure 5(a) demonstrates that the extended lower and upper cutoff
mode are unstable forK inside the unstable region. As a consequence of the modulational
instability the extended lower and upper cutoff modes evolve into localized structures. This
process provides a possible mechanism for the formation of the coupled kink–soliton and
soliton–soliton excitations in the system.

6. Coupled modes in a pendulum lattice

Although up to now there have been a lot of theoretical studies on the nonlinear localized
excitations (ILMs, IGMs etc) in lattice systems [5, 6], a physical observation for such
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(b)

Figure 5. (Continued)

excitations in atomic lattices is still absent. However, as a first step, we can use some macro-
lattices like pendulum and electric lattices [11–13] to examine the theoretical prediction. The
dynamics of the coupled modes in nonlinear lattices given above can be tested by a pendulum
lattice experiment. Not long ago both the nonlinear upper and lower cutoff modes in a damped
and parametrically driven pendulum lattice were separately observed [11, 19]. One can use the
same apparatus to observe the coupled soliton–soliton and kink–soliton pairs presented above.
To excite two modes we can apply in the vertical direction an external double frequency
drivez0(t) = −Ae1 cos(2ωe1t)−Ae2 cos(2ωe2t), whereωe1 andωe2 are near the lower cutoff
frequencyω1 and the upper cutoff frequencyω2 of the pendulum lattice, respectively. The
equation of motion of the pendulum lattice is

mlθ̈n = k2l(θn+1 + θn−1− 2θn) + k4l
3[(θn+1− θn)3 + (θn−1− θn)3]

−m(g + z̈0) sinθn − β0lθ̇n (40)

whereθn is the angle displacement of thenth pendulum in the transverse direction of the
lattice. m and l are the mass and length of each pendulum, respectively.g is the gravity
acceleration andβ0 is the damping coefficient. For details of the model, see [11, 12] and [19].
The occurrence of the cubic term in the right-hand side of the above equation is due to the
nonlinear inter-site interaction between adjacent pendulums, see [11] and [12].

Again using the QDA and taking the expansionθn(t) =
∑

j=1 ε
j θ
(j)
n,n with θ(1)n,n = A1

(ξn, τ )exp(−iω1t) +A2(ξn, τ )exp(−iω2t) + CC, we obtain the following modified coupled
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NLS equations

i
∂v

∂t
+ gv

∂2v

∂x2
+ pv(|v|2 + 2|w|2)v + i(γ0/2)v − dvv∗ = 0 (41)

i
∂w

∂t
− gw ∂

2w

∂x2
+ pw(2|v|2 + σw|w|2)v + i(γ0/2)w − dww∗ = 0 (42)

when returning to the original variables. In deriving the above equations we have assumed
that the damping and drive are of orderε2 thus we have 4(ωej )2Aej/g = ε2η0j (j = 1, 2)
andβ0/m = ε2γ0 with η0j , γ0 being constants of order unity. In equations (41) and (42)
dv = η01ω1/4,dw = η02ω

2
1/(4ω2)and(v,w) = ε(A1 exp[i(ω1−ωe1)t ],A2 exp[i(ω2−ωe2)t ]).

The definitions ofgv, gw, pv and pw are the same as in equations (5) and (6) but here
ωw = 1− 96K4l

3/(mg). The last two terms in equations (41) and (42) represent the damping
and drive, respectively.

It is striking that equations (41) and (42) still admit coupled kink–soliton and
soliton–soliton solutions. Ifm > mc,3 = 32k4l

3/g, we havev = V0 tanh(Kx) exp(−iφ1)

and w = W0 sech(Kx) exp(−iφ2), where V 2
0 = 2K2(σwgv/pv + 2gw/pw)/(4 − σw),

W 2
0 = 2K2(2gv/pv + gw/pw)/(4− σw), sin 2φ1 = γ0/(2dv) and sin 2φ2 = γ0/(2dw). Thus

it is a coupledstanding kink–solitonpair andK is no longer a free parameter but determined
byK2 = (4− σw)dv cos 2φ1/[2(σwgv + 2pvgw/pw)]. The lattice configuration in the leading
order approximation is

θn(t) = 2V0 tanh(Kna) cos(ω1t + φ1) + 2(−1)nW0 sech(Kna) cos(ω2t + φ2). (43)

Whenm < mc,3 we obtain thestanding soliton–solitonsolutionv = V0 sech(Kx) exp(−iφ1)

and w = W0 sech(Kx) exp(−iφ2), where V 2
0 = 2K2(σwgv/pv + 2gw/pw)/(σw − 4),

W 2
0 = 2K2(2gv/pv + gw/pw)/(4 − σw) andK2 = dv cos 2φ1/gv. The values ofφ1 and

φ2 are the same as above. The lattice configuration for this case takes the form

θn(t) = 2V0 sech(Kna) cos(ω1t + φ1) + 2(−1)nW0 sech(Kna) cos(ω2t + φ2). (44)

The above results show that, using the pendulum lattice with a double-frequency drive,
one can observe not only the formation of coupled nonlinear localized structures but also the
dynamical ‘phase transition’ from a coupled kink–soliton pair to a soliton–soliton pair by
changing the mass or length of the pendulum.

7. Discussion and summary

We have investigated the coupling of the lower and upper cutoff modes in a monatomic lattice.
It has been shown that the cutoff modes in nonlinear lattices may have strong interactions.
Based on a quasi-discreteness approach we have derived the nonlinear amplitude equations
for two coupled cutoff modes and found that a novel class of nonlinearly coupled localized
structures in lattices is possible through a cross-phase modulation. The exact solutions in the
form of soliton–soliton and kink–soliton pairs of the nonlinear amplitude equations have been
given and a modulational stability analysis for two-cutoff-mode excitations has been made.
The results have also been checked by numerical simulations. Finally, a pendulum lattice
experiment for observing the coupled nonlinearly coupled localized structures has also been
suggested.

We should point out that the existence of the nonlinearly coupled localized excitations
described above is a common property of discrete nonlinear systems. Thus the theory of the
dynamics of coupled cutoff modes developed above is rather general and can be extended to
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multi-atomic and higher-dimensional lattices. For the system withN coupled cutoff modes
one can obtain the following coupled NLS equations

i∂Aj/∂τ + 0j∂
2Aj/∂ξ

2
n +

( N∑
l=1

1jl|Al|2
)
Aj = 0 (45)

(j = 1, 2, . . . , N), whereAj is the envelope of thej th cutoff mode,0j = ω′′(qj )/2, 1jl

is the coefficient of the self-phase modulation (forl = j ) and the cross-phase modulation
(for l 6= j ). The analysis of the system (45) and corresponding nonlinear localized excitations
as well as an application to the study of the intrinsic resonant modes in a diatomic lattice with
the nearest- and second-neighbour interactions [20] will be presented elsewhere.
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